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Communicated by P. Schuck

Abstract. The use of elastic proton scattering at intermediate and high energies to obtain information
about the density distributions of unstable nuclei is investigated. A comparison between the relativistic
impulse approximation (RIA) and Glauber model for proton scattering from 16O, 40Ca, 44Ca and 48Ca at
medium energies is performed. We used density distributions derived from the relativistic mean-field theory,
employing the recent relativistic force NL-RA1, as well as experimental and phenomenological densities. It
is found that the eikonal approximation can describe the cross-section only at small scattering angles and is
weakly sensitive to the density distributions, while the RIA nicely produced the experimental cross-sections,
even at medium and larger angles, and was very sensitive to the nuclear densities. Furthermore, the RIA
better describes the isospin dependence of the cross-section. We used the RIA to investigate the density
distribution of 58Ca for proton scattering at different energies. It is found that the cross-section strongly
depends on the parameters of the density distribution even at a small scattering angle. These results are
important in extracting information about the structure of unstable nuclei. We also investigated the RIA
and its sensitivity in describing halo nuclei such as 6He. We used for 6He a no-halo Gaussian density
and a realistic-halo density that derived in the cluster orbital shell model approximation and contains the
extended distribution of the valence nucleons. Comparison with the recent experimental data at GSI at 717
MeV/nucleon shows that the RIA successfully described the data at all considered range of the momentum
transfer and on the other hand favor the halo structure of 6He.

PACS. 24.10.Jv Relativistic models – 25.60.-t Reactions induced by unstable nuclei

1 Introduction

The study of unstable nuclei is one of the most interest-
ing subjects in nuclear physics. Several kinds of data can
be used to study the structure of nuclei far from stability
such as reaction cross-sections and momentum distribu-
tions of fragments [1,2]. Elastic proton scattering could
also be expected to provide detailed information about
the structure of unstable nuclei such as neutron skins and
halo structure, although recent investigations of Wepp-
ner et al. [3] indicated that elastic proton scattering at
intermediate energy could not provide constraints on the
features of the structure. Similar conclusion of Weppner et
al. has also been drawn by Korsheninnikov et al. [4] from
their detailed investigations of proton elastic scattering
from halo nuclei, using an eikonal approach.

Current microscopic nonrelativistic scattering theories
form the proton-nucleus optical potentials by calculation
of the t or g matrices in a momentum or a coordinate space
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representation. The details of these nonrelativistic proton-
nucleus scattering theories are well covered in the review
of Amos et al. [5]. At intermediate and high energies many
authors used the Glauber multiple scattering [6] or eikonal
approximation in describing particle-nucleus or nucleus-
nucleus scattering and reactions (see for example [7,8]).
Although the eikonal approximation is useful for describ-
ing scattering at forward angles, its use for medium and
large scattering angles needs to be examined.

On the other hand, there has been considerable inter-
est in recent years in a relativistic description of proton-
nucleus scattering [9–17]. In fact, relativistic approaches
are a dramatic improvement of nonrelativistic ones. For
example, the spin-orbit interaction is built in the relativis-
tic Dirac equation that described the interacting nucleons
without any need for adjustable parameters. Another im-
portant feature of the relativistic description of the nuclear
many-body problem is quite the description of nuclear-
matter saturation, where most of the microscopic nonrel-
ativistic approaches saturate nuclear matter at densities
larger than the normal nuclear-matter density. Thus, the
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relativistic description of the nuclear many-body problem
satisfies a consistent description of both nuclear matter
and nuclear scattering.

As concerning proton-nucleus scattering relativistic
impulse approximation [9–17] (RIA) calculations have
provided a remarkably good description of the elastic
cross-section and spin observables at laboratory kinetic
energy of 500 MeV and above. These calculations have
been extended to lower energies by including modifica-
tions due to exchange and Pauli-blocking effects, rather
than delta-resonance influences, which are more impor-
tant above the pion threshold [16,17].

In the RIA the motion of the projectile in the field
of the nucleus is described with the Dirac equation. The
target structure can also be described in terms of Dirac nu-
cleons, where the target nucleons interact with each other
through static mean fields of Lorentz scalar and vector
character; these fields are produced by the scalar and num-
ber densities of the nucleons, so that the ground state can
be calculated self-consistently.

The aim of the present work is to investigate the RIA
in extracting information about the structure of unsta-
ble nuclei. First, we perform a comparison between the
RIA and the eikonal approximation, which is widely used
in describing proton-nucleus scattering, as well as in in-
vestigating the sensitivity of these models to the density
distributions. We used densities derived from the relativis-
tic mean-field (RMF) theory [18–31], employing the recent
relativistic force NL-RA1 [19], as well as experimental and
phenomenological densities. We carried out our study on
proton elastic scattering from 16O, 40Ca, 44Ca, 48Ca and
58Ca. Furthermore, we investigated the sensitivity of the
elastic proton scattering cross-section, calculated in the
RIA, to the halo structure of halo nuclei such as 6He. A
realistic-halo density derived in the cluster orbital shell
model calculations (COSM) [32,4] is used for describing
the halo structure of 6He. Section 2 presents the theoret-
ical description. The results are presented and discussed
in sect. 3. The effect of the halo structure in 6He is dis-
cussed in sect. 4. Finally, sect. 5 presents a summary and
conclusion.

2 Theoretical description

In the relativistic impulse approximation the Dirac equa-
tion for the single-particle motion of the projectile nucleon
in the mean field of the target nucleus can be written as [9–
17]

[−iα · ∇+UV(r;E)+β(M + US(r;E))+VC]|ψ〉=E|ψ〉,
(1)

where US and UV are the scalar and vector potentials
which contain both direct and exchange parts,

UL(=S,V) ≡ UD
L (r;E) + UX

L (r;E), (2)

E is the total nucleon-nucleus CM projectile energy, M is
its rest mass and VC is the Coulomb potential energy. The

Dirac optical potentials are calculated from the nucleon-
nucleon (NN) t-matrix, where the action of these poten-
tials on the incident-projectile wave function, projected in
the coordinate space, can be written as [15–17],

〈x|Uopt|ψ0〉 = −4πip
M

occ∑
α

∫
d3y′

∫
d3y

∫
d3x′ ψα

×[〈xy′|t(E)|x′y〉+(−1)T〈y′x|t(E)|x′y〉]ψ0(x′)ψα(y) ,
(3)

where
Uopt = US + γ0UV, (4)

p is the magnitude of the three-momentum of the pro-
jectile in the nucleon-nucleus CM frame and T is the to-
tal isospin of the two-nucleon state. The antisymmetrized
matrix element of t(E) in coordinate space is the Fourier
transform of the momentum space matrix element. The
t-matrix t(E) is the lowest-order meson-exchange dia-
gram evaluated from the Feynman rules. The mesons have
different spins and parities (scalar, vector, tensor, pseu-
doscalar, and axial vector) and isospin 0 and 1. The Dirac
optical potentials (direct and exchange parts) are written
as a folding integral of the nucleon-nucleon t-matrix and
the target (scalar and vector) densities [16,17],

UD
L (r;E) = −4πip

M

∫
d3r′ρL(r′) tDL (|r − r′|;E), , (5)

UX
L (r;E) = −4πip

M

∫
d3r′ρL(r, r′) tXL (|r − r′|;E)

× j0
(p

�
|r − r′|

)
, (6)

where the local density approximation is used for the non-
local exchange term and

tD,X
L (s;E) =

∫
d3q

2π3
tD,X
L (q;E)e−iq·s. (7)

The off-diagonal density matrix ρL(r, r′) is approximated
to be given in terms of the one-body densities, using the
density matrix expansion approximation [16,17]. For the
NN t-matrix we used the parameterization of [15,16]. For
laboratory energies around 500 MeV, the Dirac optical po-
tentials are modified by a Pauling-blocking correction [16,
17]

UL(r;E) =

[
1− a(E)

(
ρB(r)
ρ0

)2/3
]
UL(r;E). (8)

Here, ρB(r) is the local baryon density and ρ0 is the
normal nuclear-matter density. The Pauli-blocking factor
a(E) has been obtained by performing a Dirac-Brueckner
calculation using a one-boson-exchange potential, where
it can be used for energies near 200–500 MeV [16,17].

As for the scalar and vector (baryon) densities of the
target nucleus we derived them from the Lagrangian den-
sity of the relativistic mean-field theory [18–31]. This La-
grangian describes Dirac nucleons interacting with the
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scalar self-coupling σ-meson field Φ, the self-coupling neu-
tral vector ω-meson field Vµ(µ = 0, 1, 2, 3), the isovector-
vector ρ-meson field −→ρ µ and the electromagnetic fields
Aµ, i.e.,

L = ψi (γµi∂µ −M)ψi +
1
2
∂µΦ∂µΦ− 1

2
m2

σΦ
2

−1
3
b2Φ

3 − 1
4
b3Φ

4 − gσψiψiΦ− 1
4
ΩµνΩµν

+
1
2
m2

ωVµVµ − gωψiγ
µψiVµ − 1

4
−→
Bµν−→Bµν

+
1
2
m2

ρ
−→ρ µ−→ρ µ − gρψiγ

µ−→τ ψi
−→ρ µ

−1
4
FµνFµν − eψiγ

µ 1 + τ3i

2
ψiAµ. (9)

Arrows denote vectors in isospin space. The Dirac spinor
ψi represents the nucleon with mass M . mσ, mω, and
mρ are the masses of the σ-meson, the ω-meson, and the
ρ-meson, respectively. The meson-nucleon coupling con-
stants, gσ, gω and gρ, and the meson masses are param-
eters adjusted to fit nuclear-matter data and some static
properties of finite nuclei. Ωµν ,

−→
Bµν and Fµν are field ten-

sors. τ3 is the third component of the isospin.
For the masses and coupling constants of the La-

grangian density (9) we used the recent parameter set
NL-RA1 [19]: M = 939MeV, mσ = 515.7MeV, mω =
783MeV, mρ = 763MeV, gσ = 10.36231, gω =
12.921154, gρ = 4.4058795, b2 = −10.059947 fm−1 and
b3 = −27.5565. Figure 1 shows the densities of 16O and
48Ca calculated by solving the Euler-Lagrange field equa-
tions derived from the relativistic Lagrangian density (9)
and using the parameter set NL-RA1 (see ref. [19] for more
details).

We also used two parameters Fermi (2PF) (ω = 0)
and 3PF density distributions of the following modified
Woods-Saxon (W-S) shape:

ρp(r) =
ρ0p

1 + e(r−Rp
0)/ap

(
1 + ω

(
r

Rp
0

)2
)
. (10)

The experimental parameters of the proton densities are
listed in [33]. The neutron density distributions are taken
as the proton ones, but with increasing the neutron radius
by the neutron excess, i.e.,

Rn
0 = Rp

0 + α
N − Z
A

, (11)

where α is a scaling parameter taken to be 1 fm. N , Z
and A are the neutron, proton and mass numbers of the
target nucleus. The neutron diffuseness an is, in general,
taken equal to the proton one. The scalar densities are
assumed equal to the vector densities, i.e., ρp

s = ρp and
ρn
s = ρn. This approximation is only used when experi-

mental or nonrelativistic densities are used in the calcula-
tions, while for the RMF case all the proton and neutron
scalar and vector densities are derived from the relativistic
Lagrangian (9).

Fig. 1. (a) The proton and neutron densities of 16O calcu-
lated by solving the field equations derived from the relativis-
tic mean-field Lagrangian density (9) using the parameter set
NL-RA1. (b) Same as (a) but for 48Ca.

3 Results

The elastic scattering of p + 16O at Elab = 317.4 MeV,
which is calculated in the relativistic impulse approxima-
tion, as well as in the eikonal approximation, using densi-
ties derived from the RMF theory, and employed the rel-
ativistic force NL-RA1, is shown in fig. 2(a). The eikonal
approximation which is used in this work is fully described
in ref. [7]. Figure 2(b) shows the analyzing power calcu-
lated in RIA in comparison with experiment. Figure 3 is
the same as fig. 2(a) but at Elab = 497.5 MeV. The ex-
perimental data at these two values of energy are taken
from refs. [34] and [35], respectively. As shown from these
figures, the RIA better described the data even at large
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Fig. 2. (a) The elastic-scattering cross-section of p + 16O cal-
culated in the relativistic impulse approximation and eikonal
approximation at Elab ≈ 318 MeV/nucleon using densities de-
rived from the RMF Lagrangian (12), employing the relativistic
force NL-RA1, in comparison with the experimental data [34].
(b) Same as (a) but for the analyzing power, calculated in the
RIA.

scattering angles. This is also shown in figs. 4-7 for pro-
ton scattering from Ca isotopes (the experimental data
are taken from refs. [36–38]). The eikonal approximation
can describe the data only at small scattering angles, as
shown from the figures, and its sensitivity to the nuclear
densities has been found to be weak. Figures 4-7 show
also that the relativistic impulse approximation better de-
scribed the isospin dependence of the target nuclei. This is
important for extracting information about unstable nu-
clei.

It is worth mentioning that in the eikonal calculations
of the cross-section we neglect the spin-orbit potential

Fig. 3. Same as fig. 2(a) but at Elab ≈ 500 MeV/nucleon. The
experimental data are taken from [35].

since the parameters of this term are taken phenomenolog-
ically in all nonrelativistic calculations such as the eikonal
model. Therefore, including this term phenomenologically
will add some ambiguities in extracting information about
the nuclear structure. On the other hand, in the relativis-
tic impulse approximation the spin-orbit potential is built
in the Dirac equation without any adjustable free parame-
ters. This makes the RIA more powerful and advantageous
in extracting information about the structure of unstable
nuclei.

In order to investigate the sensitivity of the RIA to the
nuclear densities in some detail we plotted in fig. 7 the elas-
tic scattering cross-section of p + 48Ca calculated in the
RIA using Woods-Saxon density (2PF) with Rp

0 = 3.7369
fm and ap = 0.5245 fm [33]. Rn

0 is given by relation (11)
and three values for the neutron diffuseness parameter,
namely; an = ap = 0.5245 fm (solid line), an = 0.7 fm
(dashed line), and an = 0.3 fm (dash-dotted line) are
considered. The scalar densities are taken equal to the
matter densities. As shown from fig. 7 the experimental
density predicts very well the fitting to the cross-section
even at large scattering angles since it better describes the
tail. Any small change (under the normalization condi-
tion) in the neutron diffuseness parameter strongly affects
the cross-section , especially at medium and large scatter-
ing angles, where the cross-section decreases by increasing
the diffuseness and vice versa. This is due to the Dirac op-
tical potentials, which were strongly reduced in the inner
region and extended to larger distances by increasing the
diffuseness. This reduction in the Dirac optical potentials
reduces the elastic-scattering cross-section.

We applied the RIA in investigating and extracting in-
formation about the structure of nuclei with large value of
isospin such as 58Ca. Figure 8 shows the elastic-scattering
cross-section of p+58Ca calculated in the RIA at 200, 300,
and 400 MeV/nucleon, respectively, using 2PF as in fig. 7,
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Fig. 4. (a) Same as fig. 2(a) but for p + 40Ca. (b) Same as
fig. 2(b) but for p + 40Ca. The experimental data are taken
from [36].

for the three values of the neutron diffuseness parameter
an = 0.6, 1, and 1.4 fm. As shown from these figures
the cross-section is strongly sensitive to the parameters of
the nuclear density, where, in general, it decreases by in-
creasing the neutron diffuseness parameter, even at small
scattering angle, less than and around 10 degrees. The dip
in the cross-section decreases and goes to the forward di-
rection by increasing the energy. One also notices that the
differences in the cross-section at very small angles (about
5 degrees) due to the changes in the diffuseness parameter
increase by increasing the energy. We expect these results
to be important for experiments in extracting information
about exotic and halo nuclei.

Fig. 5. (a) Same as fig. 4(a) but for the elastic scattering of
p + 44Ca. (b) Same as fig. 4(b) but for the analyzing power.
The experimental data are taken from [37].

4 The effect of halo structure

In this section, we investigate RIA in describing proton
scattering from halo nuclei. We consider, as an example,
the angular distribution of proton scattering from the two-
neutron halo nucleus 6He. In order to study the effect of
the two-neutron halo, we assumed a Gaussian model for
the proton and neutron density distributions of the target
nucleus with equal proton and neutron oscillator param-
eter: 1.55 fm. We call this model the no-halo model. The
corresponding proton and neutron densities are shown in
fig. 9(a). As can be seen from this figure there is no halo
in the neutron density distribution. To describe the halo
structure of 6He we used the halo density derived in the
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Fig. 6. (a) Same as fig. 4(a) but for the elastic scattering of
p + 48Ca. (b) Same as fig. 4(b) but for the analyzing power.
The experimental data are taken from [38].

cluster orbital shell model approximation [32,4]. This den-
sity contains the extended distribution of the valence nu-
cleons and corresponds to the experimental matter radius
of 6He and it can be written as

ρi(=p,n)(r) = Nci
exp(−r2/a2)
π3/2a3

+Nvi
2 exp(−r2/b2)

3π3/2b5

×
[
Ar2 +B

(
r2 − 3

2
b2

)2
]
. (12)

For 6He (α+2nmodel);Ncp = Ncn = 2, Nvp = 0, Nvn = 2,
A = 1, B = 0. The parameter a = 1.55 fm corresponding
to a Gaussian density for 4He folded with a Gaussian for
the α-core motion, which characterizes the radius of 6He.

Fig. 7. The elastic scattering of p+48Ca calculated in the RIA
using Woods-Saxon shape (2PF) and using three values of the
neutron diffuseness parameter, an = 0.5245 fm (solid line), 0.7
fm (dashed line), and 0.3 fm (dash-dotted line).

The parameter b is taken as b = 2.24 fm [4]. This density is
plotted in fig. 9(b). Increasing the parameter b the neutron
halo increases as shown from fig. 9(c). Then we calculated
the cross-section of p + 6He using these model densities.
The scalar densities are taken as the vector ones, i.e., ρp

s =
ρp and ρn

s = ρn.
Figure 10 shows the elastic scattering cross-section of

p+ 6He calculated in the RIA at 300 MeV using densities
without (solid line) and with (dashed line) halo strucutre,
i.e. using the densities plotted in fig. 9 ((a) and (b)). As
shown from fig. 10 the effect of the two-neutron halo struc-
ture in 6He strongly affects the cross-section, especially at
medium and large scattering angles. This is due to the
Dirac optical potentials, where weaker potentials were ob-
tained in the inner regions when halo densities are used, as
shown from fig. 11. One also notices that by increasing the
scattering angle the difference between the cross-sections
calculated with and without including the halo structure
in the nuclear densities increases.

As an application of these calculations, we investigated
the recent data at GSI for p+6He elastic scattering at 717
MeV/nucleon [39]. Figure 12 shows the differential cross-
section for proton elastic scattering from 6He against the
invariant four-momentum transfer at 717 MeV/nucleon
calculated in the RIA in comparison with the experimental
data [39]. The solid line represents the calculation using
the no-halo Gaussian density, plotted in fig. 9(a), while
the dashed line represents the calculation using the re-
alistic cluster orbital shell model halo density plotted in
fig. 9(b). The dotted line represents the calculation using
the COSM halo density plotted in fig. 9(c). As shown from
this figure the COSM halo density, in general, success-
fully describes the cross-section, while the no-halo Gaus-
sian density presents a cross-section much higher than
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Fig. 8. (a) Same as fig. 7 but for the elastic scattering of
p+58Ca at 200 MeV/nucleon and using the values an = 0.6 fm
(solid line), 1 fm (dashed line) and 1.4 fm (dotted line) for
the neutron diffuseness parameter. (b) Same as (a) but at 300
MeV/nucleon. (c) Same as (a) but at 400 MeV/nucleon.

Fig. 9. (a) The no-halo Gaussian density distrinution of 6He
with equal proton and neutron oscillator parameter: 1.55 fm.
(b) The cluster orbit shell model halo density (eq. (9)) with the
parameters a = 1.55 fm and b = 2.24 fm. (c) Same as fig. 8(b)
but for a = 1.65 fm and b = 2.44 fm.
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Fig. 10. The elastic-scattering cross-section of p + 6He calcu-
lated at ELab = 300 MeV/nucleon in the RIA and using the
no-halo Gaussian density and the COSM halo density distri-
butions, which are plotted in fig. 9 (a,b).

Fig. 11. (a) The Dirac scalar optical potentials calculated for
p + 6He at ELab = 300MeV using the no-halo Gaussian and
halo COSM densities plotted in fig. 9 (a,b). The scalar densities
are taken to equal the vector densities. (b) Same as (a) but for
the Dirac vector optical potentials.

Fig. 12. The elastic-scattering cross-section of p + 6He
calculated at 717 MeV/nucleon against the invariant four-
momentum transfer in the RIA using the no-halo Gaussian
density (solid line) and the halo COSM density (dashed line)
distributions plotted in fig. 9 (a,b). The dotted line corresponds
to the cross-section calculated by the COSM halo density which
is plotted in fig. 9(c), where the parameters a and b are slightly
increased to a = 1.65 fm and b = 2.44 fm.

the experimental data, especially at medium and large
momentum transfer in disagreement with the data. One
also notices that the small difference appearing at large
momentum transfer between the data and the calculated
cross-section using the COSM halo density with param-
eters a = 1.55 fm and b = 2.24 fm can be removed by
a slight increase of these parameters to a = 1.65 fm and
b = 2.24 fm (see fig. 9(c)), i.e. by increasing the halo ef-
fect, which, on the other hand, strongly refers to the halo
structure of 6He.

It is worth mentioning that in the analysis of the data
of the GSI group using the eikonal approximation the
slope parameter of the nucleon-nucleon amplitude is read-
justed in order to fit the experimental cross-section [39].
Another disadvantage of the eikinal approximation is that
the sensitivity of the calculated p-nucleus cross-section to
the difference between the proton and neutron density dis-
tributions is expected to be weak, as it has been found in
the previous section, since the difference between the ele-
mentary pp and pn cross-sections is relatively small.

5 Summary and conclusion

We have studied the validity of both the relativistic im-
pulse approximation and eikonal approximation in de-
scribing elastic proton-nucleus scattering at intermediate
energies. We used densities derived from the relativistic
mean-field theory, employing the recent relativistic inter-
action NLRA1, as well as phenomenological and experi-
mental densities. We found that the eikonal approximation
can describe the cross-section at forward scattering angles
and, more important, is weakly sensitive to the difference
in the proton and neutron density distributions. On the
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other hand, the RIA is found to better describe the ob-
servables even at medium and large scattering angles and
it was very sensitive to the nuclear densities even at small
scattering angles. This is due to the strong dependence
of the vector and scalar Dirac optical potentials on nu-
clear densities. Furthermore, it has been found that the
RIA better described the isospin dependence of the target
nucleus in proton-nucleus scattering, which on the other
hand is very important for extracting information about
the structure of exotic and halo nuclei.

We applied the RIA for the recent data at GSI on
p + 6He elastic scattering at 717 MeV/nucleon. A realis-
tic cluster orbit shell model halo density is used in these
investigations in addition to a Guassian no-halo density
with an equal oscillator parameter for protons and neu-
trons. We found that the realistic COSM halo density
better described the experimental data which favor the
halo structure of 6He.
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